[1] Hauben, M., & Zhou, X. (2003). Quantitative methods in pharmacovigilance: focus on signal detection. Drug safety, 26, 159-186.
[2] Evans, S. J., Waller, P. C., & Davis, S. (2001). Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports. Pharmacoepidemiology and drug safety, 10(6), 483-486.
[3] Bate, A., Lindquist, M., Edwards, I. R., Olsson, S., Orre, R., Lansner, A., & De Freitas, R. M. (1998). A Bayesian neural network method for adverse drug reaction signal generation. European journal of clinical pharmacology, 54, 315-321.
[4] Hou, Y., Ye, X., Wu, G., Cheng, G., Du, X., & He, J. (2014). A comparison of disproportionality analysis methods in national adverse drug reaction databases of China. Expert opinion on drug safety, 13(7), 853-857.
[5] Bate, A., & Evans, S. J. W. (2009). Quantitative signal detection using spontaneous ADR reporting. Pharmacoepidemiology and drug safety, 18(6), 427-436.
[6] Zhou, X. H. A., & Yang, W. (2013). Design and analysis of post-marketing research. Chinese journal of integrative medicine, 19(7), 488-493.
[7] 晏声蕾, 陈加飞, 单雪峰, & 王红梅. (2023). 药物与乳酸酸中毒的药品不良反应信号挖掘与分析. Evaluation & Analysis of Drug-Use in Hospitals of China, (11).
[8] Bae, J. H., Baek, Y. H., Lee, J. E., Song, I., Lee, J. H., & Shin, J. Y. (2021). Machine learning for detection of safety signals from spontaneous reporting system data: example of nivolumab and docetaxel. Frontiers in Pharmacology, 11, 602365.
[9] Lee, J. E., Kim, J. H., Bae, J. H., Song, I., & Shin, J. Y. (2022). Detecting early safety signals of infliximab using machine learning algorithms in the Korea adverse event reporting system. Scientific Reports, 12(1), 14869.